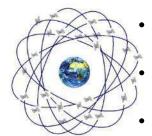


Integrating GPS and accelerometry into large scale, population level, data collections: practical utility for measuring participation in outdoor recreation, and concerns and considerations regarding its application in 10-11 year old children.


Paul McCrorie

MRC/CSO Social and Public Health Sciences Unit 18th April 2018

What is GPS?

- The Global Positioning System (GPS)
 - U.S owned utility that provides users with positioning, navigation, and timing (PNT) services
 - Launched in 1973

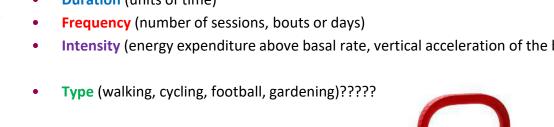
- **Space segment** 24 operating satellites (network of 31) that transmit one-way signals of position and time.
- **Control segment** worldwide monitor and control stations that maintain satellites in orbit.
- User segment GPS receiver equipment (the user) to calculate 3D position and time.
- GLONASS (Russia), GALILEO (Europe), BDS (China), IRNSS (India)
- Mobile phones, watches, car navigation systems

What is an accelerometer?

Studying Physical Activity in Children's Environments across Scotland

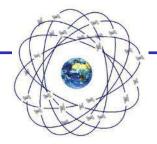
- Acceleration is defined as the change in velocity over time (e.g. m/s^2).
- Acceleration is proportional to the net external force involved => more directly reflective of energy costs.
- Accelerometers can measure along 1, 2 or 3 sensitive axes.
- Quantifies intensity of activity with respect to time
 - Time function allows frequency and duration to be calculated

- How is acceleration made meaningful?
 - anchored against some biological variable (energy expenditure or heart rate)
 - physical activity pattern recognition (e.g. Stationary, ambulatory)



- **Duration** (units of time)
- Intensity (energy expenditure above basal rate, vertical acceleration of the body, frequency of the heart beat)

Domain (leisure, work, school, transport)



Studying Physical Activity in Children's Environments across Scotland

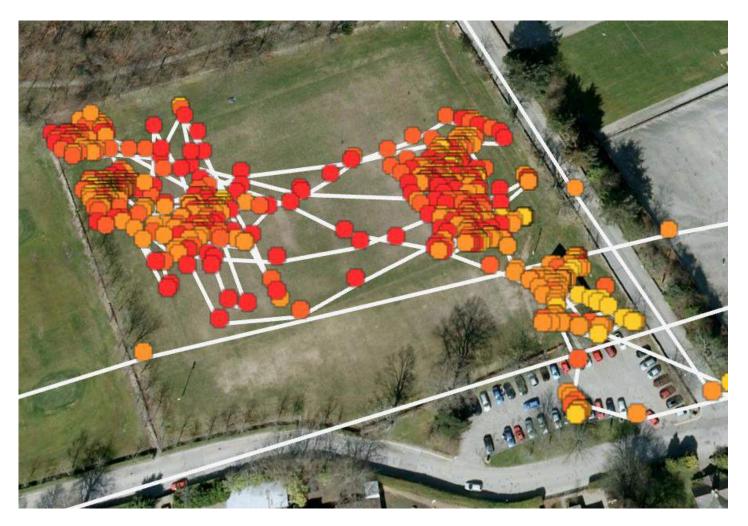
- A record of position (longitude and latitude)
- (Timestamp
- Altitude, Speed
- Precision estimates
 - Number of satellites in view/used
 - Ratio of signal to noise

Why is that useful?

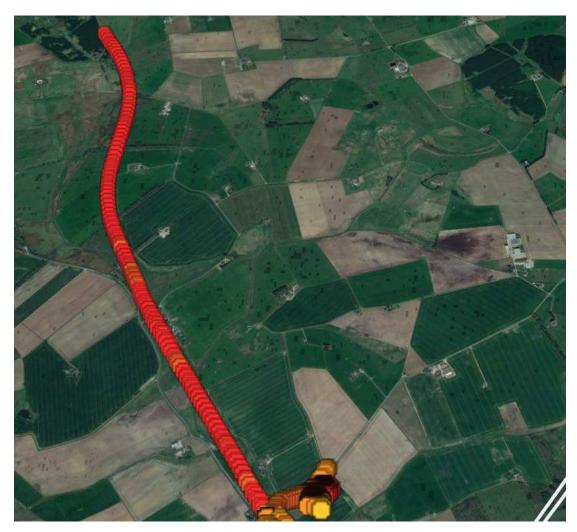
• 'Actual' exposure to our environment

- Digitisation of PA with respect to time
- (Timestamp

Why is that useful?


- High frequency record of a health behaviour
- Can be used as a health outcome
- Can also be used to quantify physical inactivity and sedentary behaviour

MRC/CSO Social and Public Health Sciences Unit, University of Glasgow.



Studying Physical Activity in Children's Environments across Scotland

MRC/CSO Social and Public Health Sciences Unit, University of Glasgow.

Studying Physical Activity in Children's Environments across Scotland

So what? How do text of those **Traditio** school/ Policy, Example How ca Google earth Where and

school are vitally important but other places are visited in between.

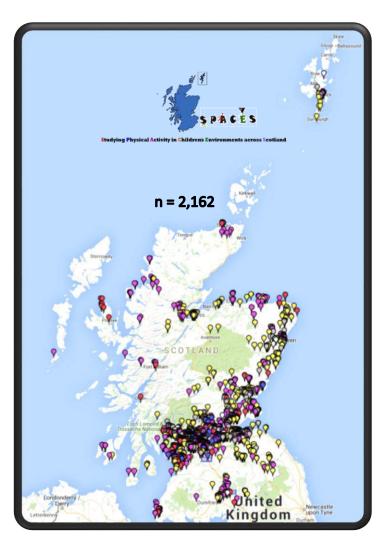
Example mapping of physical activity data (spatial and intensity) within Google earth: green = sedentary, yellow = light, red = moderate, blue = vigorous

Studying Physical Activity in Children's Environments across Scotland

Transport

- What percentage of transport is active and passive?
- What distance do people travel by bike, or on foot?
- Does traffic volume determine transportation mode to school?
- Does cycling/walking to school/work expose us to harmful levels of air pollution?
- Does built environmental change influence active travel?

Neighbourhood


- How far do children roam from their home location?
- How long do children spend indoors and outdoors?
- What factors influence/determine being outdoors?
- How big are children's neighbourhoods and what drives their size and shape?
- How does neighbourhood change influence X?

Exposure

- Is greenspace accessible? If so, is it used? If so, what kind of activity occurs in greenspace?
- Are children/adults exposed to 'environmental bads' and does this have an negative effect on health? Is this relationship socially patterned or moderated by urbanicity?
- What are the longitudinal effects of systematic change in exposure on health/behaviours?

What is SPACES?

GUS original Birth Cohort 1 C. 5,000, born between 2004-2005

GUS sweep 8, n = 2,402 (2014-2015)

10/11 years old

8 days Waking hours

Cost

- GPS device £60
 - Purchased 170 and borrowed 230
- Activity monitor £150
 - Purchased 225 and hold 175 for other projects.
- Project cost ~£500k

Ethics

- Sensitive issue for ethics committees and educational authorities
- 'Tracking' 'Big Brother' 'real-time observation'
- Data is translated into unidentifiable numbers to represent outcome
 - Mins spent in greenspace, mins spent walking to shop.
 - Never presented at individual level.

PILOT 1

Pilot 1

- One urban school (n=32), one rural school (n=40)
- Asked to wear both devices for 8 consecutive days

Actigraph GT3X+, Actigraph, Pensacola, FL, USA

Garmin Foretrex 301 as worn on the wrist

Compliance issues

"To begin the watch thing was pretty cool as it felt like I was Ben 10...."

"After one day it started digging into my wrist and...was really annoying"

Number of days	% of sample with valid data
1 day	95.7
2 day	78.6
3 day	62.9
4 day	30

Modification

Modification of GPS device choice and placement

- More accurate device QSTARZ BT-Q1000XT
 - Indoor/outdoor estimate
- Easier interface
- Central location
- More comfortable
- Both should be worn at same time
- Less burdensome

PILOT 2

Piloting work and issues identified

Piloting work and issues identified

- Initial charging devices bought in bulk.
- When packaged and sent to survey office staff they were unable to fit through the letterbox.
- The dimensions of the charger were too big.

 Potential engagement Implications for a number of sub population groups (e.g. rural, deprived)

Issue

- GPS device held in a pouch then attached to an elastic belt
- Large variability in size of the pouch

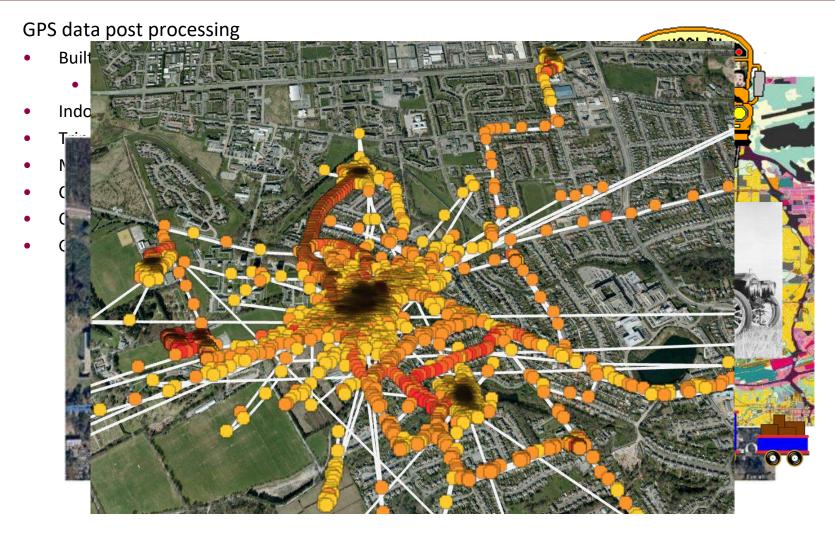
Implication(s) for Participant

- Device can easily fall out and become lost
- May have implications in more vigorous activities

Solution

Modified pouch that incorporates a Velcro strap

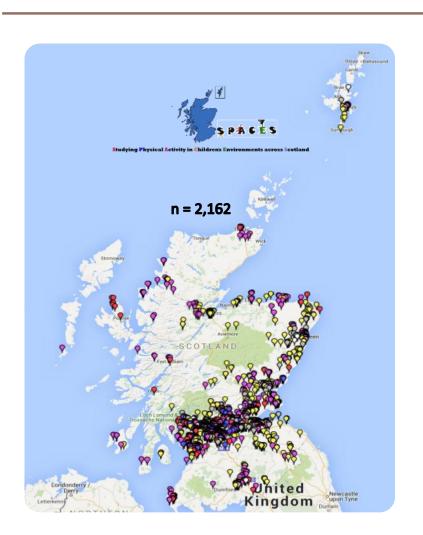
Real-time and postprocessing

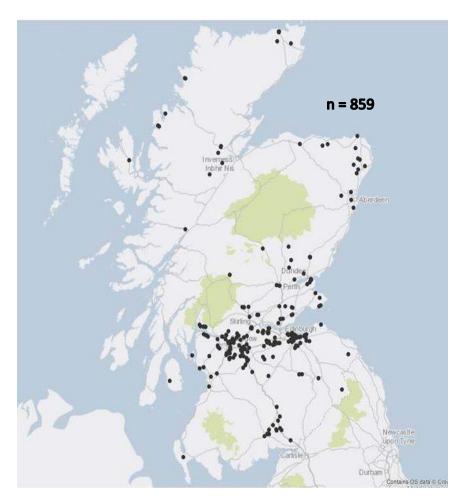


GPS memory and battery life

- Memory storage
 - User defined 'epoch' setting
 - Manual claims 400,000 points over 40 days every 5 seconds, 12 hours/day
 - In practise this is not the case (~50,000 over 8 days)
 - Protocol was set to record every 15 seconds, 24 hours/day but found memory full after 6.5 days
 - Immediate protocol change to 'waking hours'
- Battery life
 - Manual claims up to 42 hours
 - In practise this is not the case (~30 hours)
 - Impact on participant engagement
 - Charged overnight

Sources of concern – real-time and post processing




Figures courtesy of University of San Diego PALMS system

Participant response

Main study participants

Sample

Studying Physical Activity in Children's Environments across Scotland

- 1,096 children agreed to take part
 - 51% of children contacted
- 859 children returned data
 - 78% of those agreed to take part
- 776 children provided sufficient data
 - 36% of those contacted
 - 71% of those who agreed to take part
 - 417 (54%) girls and 357 (46%) boys
- 39% overall response rate

n = 2,162

n = 1,096

n = 859

n = 776

Sample non-response

Socio-economic demographic	SPACES sample	SPACES weighted sample	Sampling frame (original cohort or GUS sweep 8)
Income (per annum)			
<£3,999 - £9,999	1%	3%	3%
£10,000 - £19,999	9%	20%	16%
£20,000 - £28,999	15%	18%	14%
£29,000 - £37,999	15%	14%	15%
£38,000 - £49,999	17%	14%	16%
>£50,000	42%	27%	35%
SIMD quintile (2012)			
Most Deprived	8%	21%	25%
2 nd	13%	18%	18%
Middling	22%	19%	19%
4 th	27%	21%	20%
Least Deprived	30%	21%	18%
Highest educational qualification in household			
No qualification	1%	3%	5%
Lower level Standard Grades or equivalent	2%	3%	4%
Upper level Standard Grades or equivalent	13%	19%	20%
Higher Grades or equivalent	34%	39%	33%
Degree level academic or equivalent	49%	35%	38%
Other	1%	1%	1%

Demographic	Device loss (from n = 1096)
SIMD quintile (2012)	
Most Deprived	13%
2 nd	7%
Middling	8%
4 th	4%
Least Deprived	5%
Urban/Rural dwelling	
Large urban	5%
Other Urban	7%
Small accessible towns	10%
Small remote towns	3%
Accessible rural	7%
Remote rural	2%

- Paul Bradshaw, Liz Levy, and the team at Scotcen for all their help along the way.
- The children from GUS who took part.
- The MRC/CSO for the funding to carry out this research on behalf of the Neighbourhoods and Communities programme at the MRC/CSO Social and Public Health Sciences Unit, University of Glasgow.
- Professors Anne Ellaway, Rich Mitchell, and the SPACES team